RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2025 Volume 35, Issue 2, Pages 231–246 (Mi vuu924)

MATHEMATICS

On some conditions for the existence of a holomorphic continuation of functions in a ball

A. M. Kytmanov, S. G. Myslivets

Siberian Federal University, pr. Svobodnyi, 79, Krasnoyarsk, 660041, Russia

Abstract: The paper considers the Cauchy–Fantappiè integral representation, which is close to the Bochner–Martinelli integral representation, and the kernel of which consists of derivatives of the fundamental solution of the Laplace equation. The aim of the work is to study the properties of this integral representation for integrable functions. Namely, the paper considers an integral (integral operator) with this kernel for integrable functions $f$ on the boundary $S$ of the unit ball $B$. Iterations of the integral of this integral operator of the order $k$ are considered. We prove that they converge to a function holomorphic in $B$ as $k\to\infty$.

Keywords: Bochner–Martinelli integral representation, Cauchy–Fantappiè integral representation, ball, iterations of the integral operator, holomorphic continuation of functions into a ball

UDC: 517.55

MSC: 32A25, 32A26, 32A40

Received: 30.01.2025
Accepted: 02.04.2025

Language: English

DOI: 10.35634/vm250205



© Steklov Math. Inst. of RAS, 2025