RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2025 Volume 35, Issue 3, Pages 395–407 (Mi vuu933)

MATHEMATICS

Uniform complete controllability of linear hybrid systems

S. N. Popova, E. A. Fakhrazieva

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: We consider a non-stationary linear hybrid discrete-continuous control system
$$ \begin{cases} \dot x(t)=A_{11}(t)x(t)+A_{12}(k)y(k)+B_{11}(t)u(t)+B_{12}(k)v(k),\\ y(k+1)=A_{21}(k)x(k)+A_{22}(k)y(k)+B_{21}(k)u(k)+B_{22}(k)v(k). \end{cases} $$
The concepts of uniform complete controllability and the Kalman matrix for this system are introduced. It is proved that if there exist $\vartheta\in\mathbb N$ and $\gamma>0$ such that, for all $l\in\mathbb N_0$, for the Kalman matrix, an inequality $W(l,l+\vartheta)\geqslant\gamma I$ is valid, then the hybrid system is uniformly completely controllable.

Keywords: non-stationary linear hybrid discrete-continuous system, controllability

UDC: 517.977

MSC: 93B05, 93C05, 93C30

Received: 20.06.2025
Accepted: 10.09.2025

DOI: 10.35634/vm250304



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025