RUS  ENG
Full version
JOURNALS // Mathematical Physics and Computer Simulation // Archive

Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016 Issue 6(37), Pages 18–27 (Mi vvgum142)

Mathematics

An exact order of the majorant growth in the Schwarz–Pick inequality for torsional rigidity

D. Kh. Giniyatova

Kazan (Volga Region) Federal University

Abstract: The beginning of Schwarz–Pick type inequalities may be found in classical papers of Pick [14], Caratheodory [13], Szasz [19], Bernstein [12] and others. In recent years this program is actively developed, a number of results on inequalities of this type can be found in articles of Ruscheweyh [16;17], Yamashita [20], Avkhadiev [7–10] etc. (see also [2–4]). These results are concerned with function $f$ holomorphic or meromorphic in a domain $\Omega$ in the extended complex plane $\overline{\mathbb{C}}$ and $f(\Omega)\subset\Pi\subset\mathbb{\overline{C}}$. In [6] we obtained Schwarz–Pick type inequalities for the torsional rigidity. As known, the Saint-Venant functional P for the torsional rigidity in an arbitrary plane $\Omega$ can be found as the solution of the generalized problem (see [1;11;15])
$$ P(\Omega)=\sup\limits_{u\in C_0^{\infty}(\Omega)}\frac{\left(2\int_{\Omega} u(x)dx \right)^2}{\int_{\Omega} |\nabla u|^2 dxdy}, $$
where $(x,y)\in\Omega,\; C_0^{\infty}(\Omega)$—the space of smooth functions with compact support in $\Omega$. Let $\Omega\in\mathbb{C}$ arbitrary simply connected domain and $0\in\mathbb{C}$. According to Riemann's theorem there exists a function $f$ such that $f:\Delta\rightarrow\Omega$ and $f(0)=0$. Let $\Omega_r$ the image of the circle $\Delta_r=\{\zeta\in\mathbb{C}:|\zeta|<r\}$ under the mapping $f$ for each $r\in(0,1)$, i.e. $\Omega_r=\{z\in\Omega: z=f(\zeta), |\zeta|<r, r\in(0,1)\}$. In [6] formulated an analogue of Schwarz–Pick theorem for the $P(\Omega)$, namely proved
Theorem. Let $P(\Omega)<\infty$ and $0<r<1$. Then the following inequalities hold
$$ \frac{dP(\Omega_r)}{dr}<\frac{4r^3}{1-r^8}P(\Omega), $$
and, for each $m\in\mathbb{N}$,
$$ \left(\frac{P(\Omega_r)}{r^4}\right)^{(2m+1)}<\frac{(2m+1)!P(\Omega)}{(1-r^2)^{2m+1}}\sum\limits_{k=0}^m{m\choose k}^2r^{2k}. $$

We see, that both inequalities are strict in this theorem. In this paper we establish the asymptotic accuracy of the estimates. We prove the next theorems:
Theorem 1. For each $r_0\in[1/2,1)$ there exists $\Omega=\Omega(r_0)$, $z=0\in\Omega$, such that
$$ \left.\frac{dP(\Omega_r(r_0))}{dr}\right|_{r=r_0}\geq\frac{c_0}{1-r_0^2}, $$
where $c_0=\frac{\pi}{2^73^5}$.
Theorem 2. For each $r_0\in[1/2,1)$ there exists $\Omega=\Omega(r_0)$, $z=0\in\Omega$, such that
$$ \left.\left(\frac{P(\Omega_r(r_0))}{r^4}\right)^{(n)}\right|_{r=r_0}\geq\frac{c}{(1-r_0^2)^n}, $$
where $c=\frac{\pi}{2^{3n+2}3^{n+5}}$, n>1.

Keywords: Schwarz–Pick type inequalities, torsional rigidity, Schwarz's lemma, conformal mappings.

UDC: 517.544
BBK: 22.162

DOI: 10.15688/jvolsu1.2016.6.2



© Steklov Math. Inst. of RAS, 2024