RUS  ENG
Full version
JOURNALS // Mathematical Physics and Computer Simulation // Archive

Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016 Issue 6(37), Pages 81–98 (Mi vvgum148)

Mathematics

Comparison of solutions of nonlinear differential equations with loaded level sets

B. E. Levitsii, A. E. Biryuk

Kuban State University, Krasnodar

Abstract: We extend well-known comparison results to a class of partial differential equations with a divergent principal part containing a weight coefficient that depends on the measure of a level set of solution. Let $\Omega \subset {\mathbb{R}}^m$ be an open set with finite volume. Let $g_0(x,u) = \Phi(\mathrm{meas\left\{ \chi \in \Omega \colon u(\chi) > u(x)\right\}})$, where $\Phi$ is a continuous nonnegative function. Let $u \colon \Omega \to [0, \infty)$ be a weak solution to
$$ - \sum_{j=1}^{m} \frac{\partial}{\partial x_j} \left( g(x,u) \cdot {|\nabla u|}^{p-2} \frac{\partial u}{\partial x_j}\right) = f(x) + k {|\nabla u|}^{q} $$
subject to homogeneous boundary conditions, where $g(x,u) \ge g_0(x,u), k\ge 0$ and $f \in L^1 (\Omega)$. We prove that under certain assumptions there is a weak nonnegative solution $V \colon {\Omega}^* \to [0, \infty)$ to homogeneous Dirichlet problem for
$$ - \sum_{j=1}^{m} \frac{\partial}{\partial x_j} \left( g_0(x,V) \cdot {|\nabla V|}^{p-2} \frac{\partial V}{\partial x_j}\right) = f(x) + k {|\nabla V|}^{q} $$
such that $u^* \le V$ and $\int\limits_{\Omega} {|\nabla u|}^{p} dx \le \int\limits_{{\Omega}^*} {|\nabla V|}^{p} dx$. Here $\Omega^*$ is the open ball whose volume coincides with the volume of $\Omega$ and $u^*$ is the Schwarz symmetrization of $u$.

Keywords: comparison theorems, $p$-elliptic equations, degenerate nonlinearities.

UDC: 517.95
BBK: 22.1

DOI: 10.15688/jvolsu1.2016.6.8



© Steklov Math. Inst. of RAS, 2024