This article is cited in
1 paper
Mathematics
On the structure of the space of linear sistems of differential equations with periodic coeffiсients
V. Sh. Roitenberg Yaroslavl State Technical University
Abstract:
We examine linear systems of differential equations
$$
l: \dot {x}_i = \sum_{j=1}^{n} a_{ij}(t) x_j + b_j(t), i=1,\ldots,n
$$
with continuous
$\omega$-periodic coefficients. The system
$l$ induce the autonomous system $l_p: \dot {x}_i = \sum_{i=1}^{n} a_{ij}(s) x_j + b_j(s), \dot s = 1$ on
${\mathbf{R}}^n \times \mathbf{S}^1$, where
$\mathbf{S}^1 = \mathbf{R}/\omega \mathbf{Z}$. The system
$l_p$ has the unique extension
$\overline{l}_p$ on
${\mathbf{RP}}^n \times \mathbf{S}^1$. By trajectories of system
$l$ in
${\mathbf{R}}^n \times \mathbf{S}^1$ (
${\mathbf{RP}}^n \times \mathbf{S}^1$) we will mean trajectories of system
$l_p$ (
$\overline{l}_p$). Let us consider linear systems
$l$ as elements of Banach space
$L S^n_{\omega}$ of continuous
$\omega$-periodic functions $(a_{11}, \ldots, a_{nn}, b_1,\ldots,b_n)\colon \mathbf{R} \to \mathbf{R}^{n^2+n}$ with norm $\|l\|:=\max_{i,j}\max_{t}\max {|a_{ij}(t)|,|b_i(t)|}$. The system
$l \in L S^n_{\omega}$ is said to be structurally stable in
${\mathbf{R}}^n \times \mathbf{S}^1$ (in
${\mathbf{RP}}^n \times \mathbf{S}^1$) if
$l$ has a neighborhood
$V$ in
$l \in L S^n_{\omega}$ such that for any system
$\widetilde{l} \in V$ we may find a homeomorphism $h \colon {\mathbf{R}}^n \times \mathbf{S}^1 \to {\mathbf{R}}^n \times \mathbf{S}^1$ ( $h \colon {\mathbf{RP}}^n \times \mathbf{S}^1 \to {\mathbf{RP}}^n \times \mathbf{S}^1$, $h (\mathbf{R}^n \times \mathbf{S}^1) = \mathbf{R}^n \times \mathbf{S}^1$) which maps oriented trajectories of system
$\widetilde{l}$ onto oriented trajectories of system
$l$.
Let
$\Sigma_0 L S^n_{\omega}$ be the set of systems
$l \in L S^n_{\omega}$ whose multiplicators do not belong to the unit circle.
Theorem 1. The set
$\Sigma_0 L S^n_{\omega}$ is open and everywhere dense in
$L S^n_{\omega}$ . A system
$l \in L S^n_{\omega}$ is structurally stable in
$\mathbf{R}^n \times \mathbf{S}^1$ if and only if it belong to the set
$\Sigma_0 L S^n_{\omega}$.
Let
$\Sigma L S^2_{\omega}$ be the set of systems
$l \in L S^2_{\omega}$ whose multiplicators are real, distinct and different from
$-1$ and
$1$. Let
$\Sigma^{+}_s$,
$\Sigma^{-}_s$,
$\Sigma^{+}_{ns}$,
$\Sigma^{-}_{ns}$,
$\Sigma^{+}_{nu}$ and
$\Sigma^{-}_{nu}$ be subsets of
$\Sigma L S^2_{\omega}$ consisting of systems
$l$ with multiplicators
$\mu_1$,
$\mu_2$ for which
$\mu_1 < 1 < \mu_2$ (
$\mu_2 < -1 < \mu_1$) if
$l \in \Sigma^{+}_s$ (
$l \in \Sigma^{-}_s$) ,
$0 < \mu_1 < \mu_2 < 1$ (
$ -1 < \mu_1 < \mu_2 < 0$) if
$l \in \Sigma^{+}_{ns}$ (
$l \in \Sigma^{-}_{ns}$),
$1 < \mu_1 < \mu_2$ (
$\mu_1 < \mu_2 < 1$) if
$l \in \Sigma^{+}_{nu}$ (
$l \in \Sigma^{-}_{nu}$).
Theorem 2. 1) A system
$l \in L S^2_{\omega}$ is structurally stable in
$\mathbf{RP}^2 \times \mathbf{S}^1$ if and only if it belong to the set
$\Sigma L S^2_{\omega}$. 2) For any system
$l \in \Sigma L S^2_{\omega}$ the corresponding system
$\overline{l}_p$ in
$\mathbf{RP}^2 \times \mathbf{S}^1$ is a Morse–Smale system. 3) The sets
$\Sigma^{+}_s$,
$\Sigma^{-}_s$,
$\Sigma^{+}_{ns}$,
$\Sigma^{-}_{ns}$,
$\Sigma^{+}_{nu}$ and
$\Sigma^{-}_{nu}$ are classes of topological equivalence in
$\Sigma L S^2_{\omega}$.
The paper also describes bifurcation manifolds of codimension one in the space
$L S^2_{\omega}$.
Keywords:
linear periodic systems of differential equations, projective plane, structural stability, bifurcation manifolds, multiplicators.
UDC:
517.925.52+
517.926
BBK:
22.161.6
DOI:
10.15688/jvolsu1.2017.1.2