RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika" // Archive

Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2016 Volume 8, Issue 3, Pages 22–30 (Mi vyurm306)

This article is cited in 1 paper

Mathematics

Homogeneous model of incompressible viscoelastic fluid of the non-zero order

O. P. Matveeva, T. G. Sukacheva

Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russian Federation

Abstract: The paper deas with the Cauchy–Dirichlet problem for homogeneous dynamics model of the incompressible viscoelastic Kelvin–Voigt fluid of the non-zero order. The problem is studed using the theory of semilinear Sobolev type equations. The Cauchy–Dirichlet problem for the corresponding system of differential equations in partial derivatives is reduced to the abstract Cauchy problem for the indicated equations. The theorem of unique existance of solution to indicated problem, which is a quasistationary trajectory, is proved. The phase space is described.

Keywords: Sobolev type equation, phase space, incompressible viscoelastic fluid.

UDC: 517.958

Received: 20.11.2015

DOI: 10.14529/mmph160303



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024