RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika" // Archive

Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2025 Volume 17, Issue 3, Pages 47–54 (Mi vyurm647)

Physics

Computer modeling of magnetic properties of disordered BCC phase of Fe$_{100-x}$Me$_x$ alloys (Me = AL, GA, GE)

M. A. Zagrebina, I. A. Markovichb, A. S. Kuznetsova, M. V. Matyuninaa, A. V. Butakova

a Chelyabinsk State University, Chelyabinsk, Russian Federation
b South Ural State University, Chelyabinsk, Russian Federation

Abstract: In this paper, within the framework of density functional theory for the disordered phase $A2$ of Fe-Me alloys (Me = Al, Ga, Ge) the magnetic exchange constants $J_{ij}$ are calculated and the Curie temperatures $T_C$ are estimated in dependence of the concentration of Me = Al, Ga, Ge (in the range of $0 \leqslant x \leqslant 14 $at. %) and the crystal lattice parameter (in the range of $2,7 \leqslant a \leqslant 3,0$ Å). The $J_{ij}$ distribution obtained in the paper demonstrates non-linear behavior. The highest ferromagnetic interaction in the first coordination sphere is $\approx23$ meV. In the third coordination sphere, antiferromagnetic exchange interaction is observed, which reaches a value of $\approx -2,5$ meV. Magnetic transition temperatures calculated using the mean field approximation based on the experimental values and the $a_0$ parameters calculated within the density functional theory show the presence of a concentration range of $4 \leqslant x \leqslant 8$ at. % in which $T_C$ increases. The cross-section of the calculated Curie temperature distribution shows that for all studied Fe-Me alloys with the lattice parameter $a_0 = 2,94$ Å, it is possible to construct a dependence $T_C(x)$ that is in quality agreement with the experimental one.

Keywords: Fe-based alloys, ab initio calculations, magnetic exchange interaction, Curie temperature.

UDC: 537.61

Received: 03.06.2025

Language: English

DOI: 10.14529/mmph250305



© Steklov Math. Inst. of RAS, 2025