RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie // Archive

Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011 Issue 7, Pages 66–70 (Mi vyuru200)

This article is cited in 1 paper

On maximum infinitesimal order solutions of nonlinear equations in sectorial neighbourhood of zero

R. Y. Leontyev

Irkutsk State University

Abstract: A nonlinear operator equation $B(\lambda)x=R(x,\lambda)+b(\lambda)$ with conditions $R(0,0)\equiv0$, $b(0)=0$ is considered. The linear operator $B(\lambda)$ hasn't a continuous inverse operator at $\lambda=0,$ but it has a bounded inverse operator when $\lambda\in S$, where $S$ is a set named a sectorial neighbourhood of zero. The question of existence of infinitesimal continuous solutions $x(\lambda)\rightarrow0$ at $\lambda\in S$ when $\lambda\rightarrow0.$ The proved theorems propose a constructive way the solution of the maximum infinitesimal order.

Keywords: an implicit function theorem, a nonlinear operator equation, a sectorial neighbourhood, a maximum infinitesimal order solution.

UDC: 517.988.67

Received: 02.11.2010



© Steklov Math. Inst. of RAS, 2024