RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika" // Archive

Vestn. YuUrGU. Ser. Vych. Matem. Inform., 2024 Volume 13, Issue 2, Pages 39–55 (Mi vyurv316)

Imputation of multivariate time series based on the behavioral patterns and autoencoders

A. A. Yurtin

South Ural State University (pr. Lenina 76, Chelyabinsk, 454080 Russia)

Abstract: Currently, in a wide range of subject domains, the problem of imputation missing points or blocks of time series is topical. In the article, we present SAETI (Snippet-based Autoencoder for Time-series Imputation), a novel method for imputation of missing values in multidimensional time series that is based on the combined use of autoencoders and a time series of behavioral patterns (snippets). The imputation of a multidimensional subsequence is performed using the following two neural network models: The Recognizer, which receives a subsequence as input, where the gaps are pre-replaced with zeros, and determines the corresponding snippet for each dimension; and the Reconstructor, which takes as input a subsequence and a set of snippets received from the Recognizer, and replaces the missing elements with plausible synthetic values. The Reconstructor is implemented as a combination of the following two models: An Encoder that forms a hidden state for a set of input sequences and recognized snippets; and a Decoder that receives a hidden state as input, which imputes the original subsequence. In the article, we present a detailed description of the above models. The results of experiments over time series from real-world subject domains showed that SAETI is on average ahead of state-of-the-art analogs in terms of accuracy and shows better results when input time series reflect the activity of a certain subject.

Keywords: time series, imputation of missing values, autoencoders, behavioral patterns (snippets) of time series, neural networks.

DOI: 10.14529/cmse240203



© Steklov Math. Inst. of RAS, 2024