RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 300, Pages 187–193 (Mi znsl1008)

This article is cited in 1 paper

On Hamiltonian systems with homoclinic orbit to a saddle-center

O. Yu. Koltsova

N. I. Lobachevski State University of Nizhni Novgorod, Faculty of Computational Mathematics and Cybernetics

Abstract: We consider a real analytic two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such the system and show that in nonresonance case there are countable sets of multi-round homoclinic orbits to a saddle-center. We also find families of periodic orbits, accumulating at homoclinic orbits.

UDC: 517.9

Received: 30.11.2002

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2005, 128:2, 2787–2790

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025