RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 345, Pages 120–139 (Mi znsl101)

This article is cited in 2 papers

One generalization of the Gagliardo inequality

D. V. Maksimov

Herzen State Pedagogical University of Russia

Abstract: Suppose $u_1,u_2,\dots,u_n\in\mathcal D(\mathbb R^k)$ and suppose we are given a certain set of linear combinations of the form $\sum_{i,j}a_{ij}^{(l)}\partial_j u_i$. Sufficient conditions in terms of the coefficients $a_{ij}^{(l)}$ are indicated for the norms $\|u_i\|_{L^{\frac k{k-1}}}$ to be controlled in terms of the $L^1$-norms these linear combinations. These conditions are most transparent if $k=2$. The classical Gagliardo inequality corresponds to a sole function $u_1=u$ and the collection of its pure partial derivatives $\partial_1 u,\dots,\partial_k u$.

UDC: 517.5

Received: 21.05.2007


 English version:
Journal of Mathematical Sciences (New York), 2008, 148:6, 850–859

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025