RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 299, Pages 5–29 (Mi znsl1029)

This article is cited in 2 papers

Recovering the metric of a $CAT(0)$-space by a diagonal tube

P. D. Andreev

M. V. Lomonosov Pomor State University

Abstract: Let $(x,d)$ be a locally compact geodesically complete $CAT(0)$-space of topological dimension $>1$. It is proved that if each geodesic segment in $X$ admits a unique continuation to a complete geodesic, then the metric $d$ is recovered by the diagonal tube $V\subset X\times X$ corresponding to an arbitrary $r>0$. This partly generalizes V. N. Berestovskii's results on A. D. Aleksandrov spaces of negative curvature.

UDC: 515

Received: 25.09.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 131:1, 5257–5269

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024