RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 344, Pages 174–189 (Mi znsl105)

This article is cited in 2 papers

Estimates for the number of rational points on convex curves and surfaces

F. V. Petrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\Gamma\subset \mathbb R^d$ be a bounded strictly convex surface. Denote by $k_n(\Gamma)$ the number of points in the set $\Gamma\cap\frac1n\mathbb Z^d$. We prove that $\liminf k_n(\Gamma)/n^{d-2}<\infty$ for $d\ge 3$ and $\liminf k_n(\Gamma)/\log n<\infty$ for $d=2$.

UDC: 511.9

Received: 04.05.2007


 English version:
Journal of Mathematical Sciences (New York), 2007, 147:6, 7218–7226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025