RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 259, Pages 46–66 (Mi znsl1050)

This article is cited in 10 papers

Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth

M. Fuchs, M. Bildhauer

Saarland University

Abstract: The minimum problem $\int_{\Omega}f(\nabla u)dx\longrightarrow\min$ among mappings $u:\mathbb R^n\supset\Omega\to\mathbb R^N$ with prescribed Dirichlet boundary data and for integrands $f$ of linear growth in general fails to have solutions in the Sobolev space $W^1_1$. We therefore concentrate on the dual variational problem which admits a unique maximizer $\sigma$ and prove partial Hölder continuity of $\sigma$. Moreover, we study smoothness properties of $L^1$-limits of minimizing sequences of the original problem.

UDC: 517.9

Received: 05.06.1999

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2002, 109:5, 1835–1850

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024