RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 259, Pages 67–88 (Mi znsl1051)

This article is cited in 7 papers

Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear elliptic-parabolic equations

A. V. Ivanova, J.-F. Rodriguesb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Universidade de Lisboa

Abstract: We prove the existence and the uniqueness of a weak solution to the mixed boundary problem for the elliptic-parabolic equation
\begin{gather*} \partial_tb(u)-\operatorname{div}\{|\sigma(u)|^{m-2}\sigma(u)\}=f(x,t), \\ \delta(u):=\nabla u+k(b(u))\vec e, \qquad |\vec e|=1, \enskip m>1, \end{gather*}
with a monotone nondecreasing continuous function $b$. Such equations arise in the theory of non-Newtonian filtration as well as in the mathematical glaciology.

UDC: 517.9

Received: 08.04.1999

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2002, 109:5, 1851–1866

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024