RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 260, Pages 250–257 (Mi znsl1078)

A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure

A. V. Sudakov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is shown that for the Kantorovich metrics $\varkappa$ on probability measures for centered Gaussian measures $\gamma$ defined on Euclidean space $E$ of random variables $X$ the integral
$$ I(\gamma)=\iint\limits_{E\oplus E}\varkappa(\mathscr L(X_1),\mathscr L(X_2))(\gamma\otimes\gamma)\,d(X_1,X_2), $$
is not always monotonic in $\gamma$.

UDC: 519.2

Received: 20.12.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 109:6, 2219–2224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025