RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 261, Pages 7–30 (Mi znsl1084)

Power invariants of certain point sets

Yu. I. Babenkoa, V. A. Zalgallerb

a Russian Research Centre "Applied Chemistry"
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We consider point sets $A_1,\dots,A_n$ in the space $\mathbb R^d$, $d\ge2$, which have center of gravity at zero and, for a certain set of even exponents $2,4,\dots,2p$, “power invariants” $I_k$ in the following sense. For the sphere $S^{d-1}(R)$ with center at zero and radius $R$ and for a point $M\in S^{d-1}(R)$, the sum $I_k(M)=\sum^n_{i=1}|MA_i|^{2k}$ does not depend on the position of $M$ on the sphere $S^{d-1}(R)$ for $k=1,\dots,p$.

UDC: 514.113

Received: 26.01.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:4, 2755–2768

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024