RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 261, Pages 66–75 (Mi znsl1089)

On the convex hull of several compacta

A. V. Evdokimovab, V. A. Zalgallerb

a Saint-Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $K_0,K_1,\dots,K_m$ be nonempty compact sets in $\mathbb R^n$. Then the family of convex hulls $\operatorname{conv}\{\bigcup^m_{i=0}(K_i+r_i)\}$, $r_0=0$, is a convex family of sets, parametrized by $\rho=(r_1,\dots,r_m)\in\mathbb R^{nm}$. In case $m=1$, the volume $\operatorname{Vol\,conv}(K_0\cup(K_1+r))$ is a convex function of $r\in\mathbb R^n$.

UDC: 514.518

Received: 08.02.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:4, 2789–2794

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024