RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 261, Pages 187–193 (Mi znsl1096)

On isometric immersion of closed manifolds of nonnegative curvature

N. D. Lebedeva

Saint-Petersburg State University

Abstract: Let $M^n$ be a closed manifold. Assume that an immersion $f\colon M^n\to\mathbb R^N$ induces a $C^2$-smooth metric of nonnegative curvature or a polyhedral metric of nonnegative curvature on $M^n$. If this nonnegativness is left invariant under every affine transformation of $\mathbb R^N$, then $f$ is an embedding on the boundary of a $C^2$-smooth convex body (a convex polyhedron correspondingly) in some $\mathbb R^{n+1}\subset\mathbb R^N$.

UDC: 514.752.44

Received: 08.02.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:4, 2861–2864

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025