RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 263, Pages 193–204 (Mi znsl1142)

This article is cited in 2 papers

Nonvanishing of automorphic $L$-functions at the center of the critical strip

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $S_k(\Gamma_0(N)\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and of character $\chi(\operatorname{mod}n)$, let $f(z)$ be a newform of the space $S_k(\Gamma_0(N),\chi)$, and let $L_f(s)$ be the corresponding $L$-function. The following statements are proved.
(1) Let $\mathscr F_0$ be the set of all newforms of $S_k(\Gamma_0(p),1)$, let $p$ be prime, and let $k\ge2$ be a constant even number. Then
$$ \sum_{f\in\mathscr F_0:L_f(k/2)\ne0}1\gg\frac p{\log^2p} \quad (p\to\infty). $$
(2) Let $\mathscr F$ be the set of all Hecke eigenforms of the space $S_k(\Gamma_0(1),1)$ and let $k\equiv0\pmod 4$. Then
$$ \sum_{f:\mathscr F_0:L_f(k/2)\ne0}1\gg\frac k{log^2k} \quad (k\to1). $$


UDC: 511.466+517.863

Received: 18.10.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:6, 3143–3149

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024