Abstract:
Let $S_k(\Gamma_0(N)\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and of character $\chi(\operatorname{mod}n)$, let $f(z)$ be a newform of the space $S_k(\Gamma_0(N),\chi)$, and let $L_f(s)$ be the corresponding $L$-function. The following statements are proved.
(1) Let $\mathscr F_0$ be the set of all newforms of $S_k(\Gamma_0(p),1)$, let $p$ be prime, and let $k\ge2$ be a constant even number. Then
$$
\sum_{f\in\mathscr F_0:L_f(k/2)\ne0}1\gg\frac p{\log^2p} \quad (p\to\infty).
$$
(2) Let $\mathscr F$ be the set of all Hecke eigenforms of the space $S_k(\Gamma_0(1),1)$ and let $k\equiv0\pmod 4$. Then
$$
\sum_{f:\mathscr F_0:L_f(k/2)\ne0}1\gg\frac k{log^2k} \quad (k\to1).
$$