RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 299, Pages 300–313 (Mi znsl1146)

Generic immersions of the two-sphere to $\mathbf R^3$ and their skeleta

M. A. Stepanova

Herzen State Pedagogical University of Russia

Abstract: Let $f\colon S^2\looparrowright\mathbb R^3$ be a generic smooth immersion. The skeleton of $f$ is the following triple $(\Gamma, D, p)$. $\Gamma$ is the 1-polyhedron of singular points of $f$, $D=f^{-1}(\Gamma)$ is also a 1-polyhedron, and $p\colon D\to\Gamma$, $x\mapsto f(x)$, is the projection. For triples of the form $(D,\Gamma, p)$, where $\Gamma$ has at most 4 vertices, we give an iff-condition under which the triple is the skeleton of a smooth immersion $f\colon S^2\looparrowright\mathbb R^3$.

UDC: 515.164.634

Received: 31.01.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 131:1, 5428–5437

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025