RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 343, Pages 222–232 (Mi znsl117)

This article is cited in 1 paper

$\mathcal{CS}$-indecomposable ordered semigroups

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics

Abstract: An ordered semigroup $S$ is called $\mathcal{CS}$-indecomposable if the set $S\times S$ is the only complete semilattice congruence on $S$. In this paper we prove that each ordered semigroup is, uniquely, complete semilattice of $\mathcal{CS}$-indecomposable semigroups, which means that it can be decomposed into $CS$-indecomposable components in a unique way. Furthermore, the $\mathcal{CS}$-indecomposable ordered semigroups are exactly the ordered semigroups which do not contain proper filters.

UDC: 512.5

Received: 30.05.2007

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2007, 147:5, 7098–7104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024