RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 264, Pages 311–320 (Mi znsl1184)

On boundary value problems for a version of Maxwell equations

Sh. Sakhaev

Saint-Petersburg State University

Abstract: Boundary value problem for the system of equations
$$ \operatorname{rot}\vec H-\sigma\vec E=0, \quad \operatorname{rot}\vec E+\mu\vec H=0, $$
(where $\sigma$ and $\mu$ are positive constants) in a domain $\Omega\Subset R^3$ are considered. Boundary conditions are
$$ H_n\big|_{\partial\Omega}=\varphi(x)\big|_{\partial\Omega},\ \ E_n\big|_{\partial\Omega}=f(x)\big|_{\partial\Omega}. $$
The correcntess of the problem is proved if $\partial\Omega$ is smooth. The potential theory is used to get this result.

UDC: 517.947

Received: 10.01.2000


 English version:
Journal of Mathematical Sciences (New York), 2002, 111:5, 3806–3811

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025