RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 265, Pages 202–221 (Mi znsl1199)

The monoid of semisimple multiclasses of the group $G=G_2(K)$

M. N. Kornienko

Herzen State Pedagogical University of Russia

Abstract: Let $G$ be a group, and let $C_L,\ldots,C_K$ be a sequence of conjugacy classes of $G$. The product $C_1C_2\ldots C_K=\{c_1c_2\ldots c_k\mid c_i\in C_i\}$ is called a multiclass of $G$. Further, let $G$ be a simple algebraic group, and let $M_{cs}(G)$ be the set of closures (with respect to Zariski topology) of all multiclasses of $G$ which are generated by semisimple conjugacy classes of $G$. Then $M_{cs}(G)$ is a monoid with respect to the operation: $m_1\cdot m_2=\overline{m_1m_2}$, where $\overline m$ is the closure of $m$. In this paper we give a description of $M_{cs}(G)$ in the case $G=G_2(K)$, where $K$ is an algebraically closed field of the characteristic zero.

UDC: 512.8+519.4

Received: 28.12.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 112:4, 4355–4366

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025