RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 267, Pages 46–52 (Mi znsl1265)

This article is cited in 2 papers

Triangulations of manifolds and combinatorial bundle theory: an announcement

L. Andersona, N. E. Mnevb

a Texas A&M University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: For a given compact $\mathrm{PL}$-manifold $X$, studied is the category $\mathbf{CM}(X)$ of combinatorial-manifold structures on $X$, whose objects of $\mathbf{CM}(X)$ are abstract simplicial complexes $S$ with geometric realization $\mathrm{PL}$-homeomorphic to $X$, and while the morphisms are “combinatorial subdivisions.” The geometric realization $B\mathbf{CM}(X)$ of the nerve of $\mathbf{CM}(X)$ is announced to be homotopy equivalent to the classifying space $B\mathrm{PL}(X)$ of the simplicial group $\mathrm{PL}(X)$: $B\mathbf{CM}(X)\approx B\mathrm{PL}(X)$.

UDC: 515.145.22+515.145.23+515.164.22

Received: 29.10.1999

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2003, 113:6, 755–758

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024