RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 269, Pages 339–353 (Mi znsl1323)

This article is cited in 11 papers

Davenport's theorem in the theory of irregularities of point distribution

W. W. L. Chena, M. M. Skriganovb

a Macquarie University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We study distributions ${\mathscr D}_N$ of $N$ points in the unit square $U^2$ with a minimal order of the $L_2$-discrepancy ${\mathscr L}_2[{\mathscr D}_N]<C(\log N)^{1/2}$, where the constant $C$ is independent of $N$. We introduce an approach using Walsh functions that admits generalization to higher dimensions

UDC: 511.9

Received: 15.06.2000

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2003, 115:1, 2076–2084

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024