RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 270, Pages 7–18 (Mi znsl1325)

Description of hyperinvariant subspaces of a contraction in terms of its characteristic function

V. I. Vasyunin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: If $T$ is a completely nonunitary contraction on a Hilbert space and $L$ is its invariant subspace corresponding to a regular factorizations of its characteristic function $\Theta=\Theta'\Theta''$, then $L$ is hyperinvariant if and only if the following two conditions are fulfilled:

UDC: 517.9

Received: 20.03.2000


 English version:
Journal of Mathematical Sciences (New York), 2003, 115:2, 2093–2099

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024