RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 270, Pages 103–123 (Mi znsl1330)

Extension of operators defined on reflexive subspaces of $L^1$ and $L^1/H^1$

S. V. Kislyakov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Inperpolation theory is used to develop a general pattern for proving extension theorems mentioned in the title. In the case where the range space $G$ is a $w^*$-closed subspace of $L^\infty$ or $H^\infty$ with reflexive annihilator $F$, a necessary and sufficient condition on $G$ is found for such an extension to be always possible. Specifically, $F$ must be Hilbertian and become complemented in $L^p$ $(1<p\le2)$ after a suitable change of density.

UDC: 517.5

Received: 28.07.2000


 English version:
Journal of Mathematical Sciences (New York), 2003, 115:2, 2147–2156

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024