RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 270, Pages 317–324 (Mi znsl1340)

The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations

V. A. Sloushch

Saint-Petersburg State University

Abstract: Let $A$ be a selfadjoint operator, $(\alpha,\beta)$ the inner gap in the spectrum of the operator $A$; let $B(t)=A+tW^*W$, where the operator $W(A-iI)^{-1}$ is not necessarily bounded. Conditions are obtained that guarantee that the spectrum of $B(t)$ in $(\alpha,\beta)$ be discrete. Let $N(\lambda,A,W,\tau)$, $\lambda\in(\alpha,\beta)$, $\tau>0$ be the number of eigenvalues of the operator $B(t)$ having passed the point $\lambda\in(\alpha,\beta)$ as $t$ increases from 0 to $\tau$. The asymptotics $N(\lambda,A,W,\tau)$, $\tau\to+\infty$, is obtained in terms of the spectral asymptotics of a certain selfadjoint compact operator.

UDC: 517.43

Received: 30.07.2000


 English version:
Journal of Mathematical Sciences (New York), 2003, 115:2, 2267–2271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025