RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 270, Pages 325–335 (Mi znsl1341)

The discrete spectrum of differential operators in the spectral gaps in the case of nonnegative perturbations of higher order

V. A. Sloushch

Saint-Petersburg State University

Abstract: Let $A$ be a selfadjoint, elliptic second order differential operator, let $(\alpha,\beta)$ be the inner gap in the spectrum of $A$; let $B(t)=A+tW^*W$, where $W$ is a differential operator of higher order. Conditions are obtained that guarantee that the spectrum of the operator $B(t)$ in the gap $(\alpha,\beta)$ be discrete, or do not accumulate to the right edge of the spectral gap, or be finite. The quantity $N(\lambda,A,W,\tau)$, $\lambda\in(\alpha,\beta)$, $\tau>0$ (the number of eigenvalues of the operator $B(t)$ having passed the point $\lambda\in(\alpha,\beta)$ as $t$ increases from 0 to $\tau$) is considered. Estimates for $N(\lambda,A,W,\tau)$ are obtained. For the perturbation $W^*W$ of special from, the asymptotics of $N(\lambda,A,W,\tau)$, $\tau\to+\infty$, is given.

UDC: 517.43

Received: 30.07.2000


 English version:
Journal of Mathematical Sciences (New York), 2003, 115:2, 2272–2278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025