RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 271, Pages 39–55 (Mi znsl1346)

This article is cited in 14 papers

Boundary estimates for solutions to the parabolic free boundary problem

D. E. Apushkinskayaa, H. Shahgholianb, N. N. Ural'tsevaa

a Saint-Petersburg State University
b Royal Institute of Technology

Abstract: Let $u$ and $\varOmega$ (an open set in $\mathbb R^{n+1}_+=\{(x,t):x\in\mathbb R^n,\ t\in\mathbb R^1,\ x_1>0\}$, $n\geqslant2$) solve the following problem:
$$ H(u)=\chi_{\varOmega}, \quad u=|Du|=0 \quad\text{in}\quad Q_1^+\setminus\varOmega, \quad u=0 \quad\text{on}\quad \Pi\cap Q_1, $$
where $H=\Delta-\partial_t$ is the heat operator, $\chi_{\varOmega}$ denotes the characteristic function of $\varOmega$, $Q_1$ is the unit cylinder in $\mathbb R^{n+1}$, $Q_1^+=Q_1\cap\mathbb R^{n+1}_+$, $\Pi=\{(x,t):x_1=0\}$, and the first equation is satisfied in the sense of distributions. We obtain the optimal regularity of the function $u$, i.e., we show that $u\in C^{1,1}_x\cap C^{0,1}_t$.

UDC: 517.9

Received: 16.10.2000

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2003, 115:6, 2720–2730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024