RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 272, Pages 286–293 (Mi znsl1377)

On a theorem of Grothendieck

I. A. Panin, A. L. Smirnov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is considered a smooth projective morphism $p\colon T\to S$ to a smooth variety $S$. It is proved, in particular, the following result. The total direct image $Rp_*(\mathbb Z/n\mathbb Z)$ of the constant étale sheaf $\mathbb Z/n\mathbb Z$ is locally for Zariski topology quasi-isomorphic to a bounded complex $\mathscr L$ on $S$ consisting of locally constant constructible étale $\mathbb Z/n\mathbb Z$-module sheaves.

UDC: 512.73

Received: 10.09.2000

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2003, 116:1, 3042–3046

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024