RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2001 Volume 278, Pages 225–247 (Mi znsl1445)

This article is cited in 11 papers

Conditions of the local asymptotic normality for Gaussian stationary random processes

V. N. Solev, A. Zerbet

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\mathbf x[\cdot]$ be a stationary Gaussian process with zero mean and spectral density $f$, $\mathscr F$ be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\,\varphi\in D(R^1)$, $\mathscr F_t$, $t>0$, be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\operatorname{supp}\varphi\in[-t,t]$. We denote by $\mathscr P(f)$ the Gaussian measure on $\mathscr F$, generated by $\mathbf x$. Let $\mathscr P_t(f)$ be the restriction of $\mathscr P(f)$ on $\mathscr F_t$. Suppose nonnegative functions $f$ and $g$ are chosen by such a way that measures $\mathscr P_t(f)$ and $\mathscr P_t(g)$ are absolutely continuous and put
$$ \mathscr D_t(f,g)=\ln\frac{d\mathscr P_t(f)}{d\mathscr P_t(g)}\,. $$
For a fixed $g(u)$ and $f(u)=f_t(u)$ close in some sense to $g(u)$ the asymptotic normality of $\mathscr D_t(f,g)$ is proved under some regularity conditions.

UDC: 519.2

Received: 14.06.2001


 English version:
Journal of Mathematical Sciences (New York), 2003, 118:6, 5635–5649

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024