RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2001 Volume 280, Pages 141–145 (Mi znsl1472)

This article is cited in 1 paper

An estimate for the measure of nonconvexity in the $L^p$-space

N. M. Gulevich, O. N. Gulevich

State University for Waterway Communications

Abstract: The measure $\alpha(A)$ of nonconvexity for a bounded subset $A$ of a normed linear space $L$ is the Hausdorff distance between $A$ and its convex hull co $A$. It is proved that if $L$ is an $L^p$-space, then $\alpha(A)\le d(A)/2^{t_p}$, where $d(A)$ is the diameter of $A$ and $t_p=\min\{1/p,1-1/p\}$, $1\le p\le\infty$.Furthermore, this estimate is sharp.

UDC: 517.98

Received: 14.05.2001


 English version:
Journal of Mathematical Sciences (New York), 2004, 119:2, 201–204

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024