RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2001 Volume 283, Pages 98–122 (Mi znsl1525)

This article is cited in 10 papers

The Markov–Krein correspondence in several dimensions

S. V. Kerov, N. V. Tsilevich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Given a probability distribution $\tau$ on a space $X$, let $M=M_\tau$ denote the random probability measure on $X$ known as Dirichlet random measure with parameter distribution $\tau$. We prove the formula
$$ \biggl\langle\frac1{1-z_1F_1(M)-\ldots-z_mF_m(M)}\biggr\rangle=\exp\int\ln\frac1{1-z_1f_1(x)-\ldots-z_mf_m(x)}\tau(dx), $$
where $F_k(M)=\int_Xf_k(x)M(dx)$, the angle brackets denote the average in $M$, and $f_1,\dots,f_m$ are the coordinates of a map $f\colon X\to\mathbb R^m$. The formula describes implicitly the joint distribution of the random variables $F_k(M), k=1,\ldots,m$. Assuming that the joint moments $p_{k_1,\dots,k_m}=\int f^{k_1}_1\dots f^{k_m}_m(x)\,d\tau(x)$ are all finite, we restate the above formula as an explicit description of the joint moments of the variables $F_1,\dots,F_m$ in terms of $p_{k_1,\dots,k_m}$. In the case of a finite space, $|X|=N+1$, the problem is to describe the image $\mu$ of a Dirichlet distribution
$$ \frac{M^{\tau_0-1}_0M^{\tau_1-1}_1\dots M^{\tau_N-1}_N}{\Gamma(\tau_0)\Gamma(\tau_1)\dots\Gamma(\tau_N)}dM_1\dots dM_N; \qquad M_0,\dots,M_N\ge, M_0+\ldots+M_N=1 $$
on the $N$-dimensional simplex $\Delta^N$ under a linear map $f\colon\Delta^N\to\mathbb R^m$. An explicit formula for the destiny of $\mu$ was already known in the case of $m=1$; here we find it in the case of $m=N-1$.

UDC: 519.21

Received: 29.10.2001

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2004, 121:3, 2345–2359

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024