RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 285, Pages 15–32 (Mi znsl1549)

This article is cited in 6 papers

On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data

M. I. Belisheva, V. M. Isakovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics and Statiatics, Wichita State University

Abstract: The paper deals with the problem of determination of the parameters (functions) $\varepsilon$$\mu$ of the Maxwell dynamical system
\begin{align*} &\varepsilon E_t=\operatorname{rot}H, \quad \mu H_t=-\operatorname{rot}E \quad\text{â}\quad \Omega\times(0,T); \\ &E|_{t=0}=0, \quad H|_{t=0}=0 \quad\text{â}\quad \Omega; \\ &E_{\tan}=f \quad\text{íà}\quad \partial\Omega\times[0,T] \end{align*}
(tan is the tangent component; $E=E^f(x,t)$, $H=H^f(x,t)$ is the solution) through the response operator $R^T\colon f\to\nu\times H^f|_{\partial\Omega\times[0,T]}$ ($\nu$ is normal). The parameters determine the velocity $c=(\varepsilon\mu)^{-\frac12}$, the $c$-metric $ds^2=c^{-2}|dx|^2$, and the time $T_*=\max\limits_\Omega\operatorname{dist}_c(\cdot,\partial\Omega)$. We show that, for any fixed $T>T_*$, the operator $R^{2T}$ determines $\varepsilon,\mu$ in $\Omega$ uniquely.

UDC: 517.946

Received: 10.11.2001


 English version:
Journal of Mathematical Sciences (New York), 2004, 122:5, 3459–3469

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024