RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 286, Pages 103–114 (Mi znsl1570)

This article is cited in 14 papers

On the problem on maximizing the product of powers of conformal radii of nonverlapping domians

E. G. Emel'yanov

St. Petersburg State University of Economics and Finance

Abstract: A sharp estimate of the product
$$ \prod^4_{k=1}R^{\alpha^2_k}(D_k,b_k) $$
(as usual,$R(D,b)$ denotes the conformal radius of a domian $D$ with respect to a point $b\in D$) in the family of all quadruples of nonoverlapping simply connected domians $\{D_k\}$, $b_k\in D_k$, $k=1,\dots,4$, is obtained. Here, $\{b_1,\dots,b_4\}$ are four arbitrary distinct points on $\overline{\mathbb C}$, $\alpha_1=\alpha_2=1$, $\alpha_3=\alpha_4=\alpha$, and $\alpha$ is an arbitrary positive number. The proof involves the solution of the problem on maximizing a certain conformal invariant, which is related to the problem under consideration.

UDC: 517.54

Received: 16.09.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 122:6, 3641–3647

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024