RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 290, Pages 42–71 (Mi znsl1613)

This article is cited in 25 papers

Singular symmetric functionals

P. G. Doddsa, B. de Pagterb, A. A. Sedaevcd, E. M. Semenovc, F. A. Sukochevca

a School of Informatics and Engineering at Flinders University
b Delft University of Technology
c Voronezh State University
d Voronezh State Academy of Building and Architecture

Abstract: This is a continuation of the study started in [3]. A linear functional $f$ on a rearrangement invariant space $E$ on $(0, \infty)$ is said to be symmetric if for $x, y\in E$ the condition
$$ \int\limits^t_0x^*(s)sd\le\int\limits^t_0y^*(s)ds,\quad t>0, $$
implies that $f(x)\le f(y)$. A new construction of singular symmetric functionals on the Marcinkiewicz space $M(\psi)$ is presented and studied in detail. A necessary and sufficient condition in terms of $\psi$ is obtained for the seminorms equal to distance to $M(\psi)\cap L_1$ and $M(\psi)\cap L_{\infty}$ to be recoverable in terms of the symmetric singular functionals on $M(\psi)$.

UDC: 517.5

Received: 13.06.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 124:2, 4867–4885

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024