RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 290, Pages 122–137 (Mi znsl1615)

Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity

A. M. Kotochigov

Saint-Petersburg State Electrotechnical University

Abstract: We describe how of boundary interpolation sets changes between the disk-algebra and Hölder spaces of analytic functions. For the disk-algebra, an interpolation set is a set of zero measure, and for Hölder classes of order $\alpha$ it is a porous set. For the Hölder-type classes corresponding to a modulus of continuity $\omega$, a certain condition of $\omega$-porosity turnes out to be necessary for free interpolation. Every set of zero measure is $\omega$-porous for some $\omega$.We prove also a Muckehoupt-type inequality that may be of use for the proof of the sufficiency of the $\omega$-porosity condition.

UDC: 513.881

Received: 23.10.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 124:2, 4909–4917

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025