RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 290, Pages 168–176 (Mi znsl1617)

This article is cited in 5 papers

Inverse approximation theorem on an infinite union of segments

N. A. Shirokov

Saint-Petersburg State University

Abstract: Let $E=\bigcup\limits^{\infty}_{n=-\infty}[a_n, b_n]$, where $a_n$ and $b_n$ satisfy $0<c_1\le b_n-a_n\le c_2$, $0<c_3\le a_{n+1}-b_n\le c_4$ $n=0,\pm1,\pm2$. Denote by $B_{\sigma}$ the class of all entire functions of exponential type $\le\sigma$ bounded on the real axis. Under certain assumptions on the rate of approximation on $E$ of a bounded function $f$ by functions in $B_{\sigma}$ ($\sigma$ varies), we get some information about the smoothness of $f$.

UDC: 517.5

Received: 25.10.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 124:2, 4935–4939

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025