RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 353, Pages 14–26 (Mi znsl1627)

This article is cited in 1 paper

A direct proof of Gromov's theorem

Yu. D. Buragoa, S. G. Malevb, D. I. Novikovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Faculty of Mathematics and Computer Science, Weizmann Institute of Science

Abstract: A new proof of a theorem by Gromov is given: for any $C>0$ and integer $n>1$, there exists a function $\Delta_{C,n}(\delta)$ such that if the Gromov–Hausdorff distance between two complete Riemannian $n$-manifolds $V$ and $W$ is at most $\delta$, their sectional curvatures $|K_\sigma|$ do not exceed $C$, and their injectivity radii are at least $1/C$, then the Lipschitz distance between $V$ and $W$ is less than $\Delta_{C,n}(\delta)$, and $\Delta_{C,n}(\delta)\to0$ as $\delta\to0$. Bibl. – 6 titles.

UDC: 514.7

Received: 20.07.2007

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2009, 161:3, 361–367

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024