RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 353, Pages 54–61 (Mi znsl1631)

This article is cited in 2 papers

An elementary proof of Tverberg's theorem

M. Yu. Zvagel'skii

Saint-Petersburg State University

Abstract: We give a new proof of Tverberg's familiar theorem saying that an arbitrary set of $q=(d+1)(p-1)+1$ points in $\mathbb R^d$ can be split into $p$ parts whose convex hulls have a nonempty intersection. Bibl. – 9 titles.

UDC: 514.17

Received: 04.03.2007


 English version:
Journal of Mathematical Sciences (New York), 2009, 161:3, 384–387

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025