RUS
ENG
Full version
JOURNALS
// Zapiski Nauchnykh Seminarov POMI
// Archive
Zap. Nauchn. Sem. POMI,
2008
Volume 353,
Pages
54–61
(Mi znsl1631)
This article is cited in
2
papers
An elementary proof of Tverberg's theorem
M. Yu. Zvagel'skii
Saint-Petersburg State University
Abstract:
We give a new proof of Tverberg's familiar theorem saying that an arbitrary set of
$q=(d+1)(p-1)+1$
points in
$\mathbb R^d$
can be split into
$p$
parts whose convex hulls have a nonempty intersection. Bibl. – 9 titles.
UDC:
514.17
Received:
04.03.2007
Fulltext:
PDF file (200 kB)
References
Cited by
English version:
Journal of Mathematical Sciences (New York), 2009,
161
:3,
384–387
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025