RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 353, Pages 150–161 (Mi znsl1640)

This article is cited in 2 papers

Characteristics of link primeness in terms of pseudo-characters

A. V. Malyutin

Saint-Petersburg State University

Abstract: Pseudo-characters of Artin's braid groups and properties of links represented by braids are studied. The notion of kernel pseudo-character is introduced. It is proved that if a kernel pseudo-character $\phi$ and a braid $\beta$ satisfy $|\phi(\beta)|>C_\phi$, where $C_\phi$ is the defect of $\phi$, then $\beta$ represents a prime (i.e., noncomposite, nonsplit, and nontrivial) link. A method for obtaining nontrivial kernel pseudo-characters from an arbitrary nontrivial braid group pseudo-character is described. Bibl. – 17 titles.

UDC: 515.162.8+512.54

Received: 16.09.2006


 English version:
Journal of Mathematical Sciences (New York), 2009, 161:3, 437–442

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024