RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 291, Pages 169–184 (Mi znsl1656)

This article is cited in 1 paper

Unified quantization of three-dimensional bialgebras

E. V. Damaskinskya, P. P. Kulishb, M. A. Sokolovc

a Military Technical University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c St. Petersburg Institute of Machinery

Abstract: The joint multiparameter quantization of several three-dimensional Lie algebras is given. Among the quantized algebras one finds the Heisenberg algebra, the algebra of motions of the (pseudo)euclidean plane and $su(2)$. Such a quantization is possible because all of the mentioned algebras are dual to the same solvable Lie algebra. The explicit form of the number $R$-matrix is given which allows to encode some of the commutation relations in the form of the RTT-equation.

UDC: 517.9

Received: 27.09.2002


 English version:
Journal of Mathematical Sciences (New York), 2005, 125:2, 193–202

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024