RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 355, Pages 163–172 (Mi znsl1705)

Radial limits of positive solutions to the Darboux equation

E. S. Dubtsov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Assume that a positive function $u$ satisfies the Darboux equation
$$ \Delta u=\frac{(\alpha-1)}y\frac{\partial u}{\partial y},\qquad\alpha>0, $$
in the upper half-space $\mathbb R_+^{d+1}$. We investigate Bloch type conditions that guarantee the following property: for any $a\in(0,+\infty)$, the set where the radial limit of $u$ is equal to $a$, is large in the sense of the Hausdorff dimension. Bibl. – 6 titles.

UDC: 517.5

Received: 25.01.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 156:5, 813–818

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024