RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 355, Pages 173–179 (Mi znsl1706)

This article is cited in 3 papers

Toeplitz condition numbers as an $H^\infty$ interpolation problem

R. Zarouf

Institut de Mathématiques de Bordeaux, Université Bordeaux

Abstract: The condition numbers $CN(T)=\Vert T\Vert\cdot\Vert T^{-1}\Vert$ of Toeplitz and analyticToeplitz $n\times n$ matrices $T$ are studied. It is shown that the supremum of $CN(T)$ over all such matrices with $\Vert T\Vert\leq1$ and a given minimum of eigenvalues $r=\min_{i=1,\dots,n}|\lambda_i|>0$ behaves as the corresponding supremum over all $n\times n$ matrices (i.e., as $\frac1{r^n}$; Kronecker), and this equivalence is uniform in $n$ and $r$. The proof is based on the use of the Sarason–Sz.-Nagy–Foiaş commutant lifting theorem. Bibl. – 2 titles.

UDC: 517.5

Received: 15.06.2008

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2009, 156:5, 819–823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025