RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 355, Pages 180–198 (Mi znsl1707)

This article is cited in 10 papers

Littlewood–Paley theorem for arbitrary intervals: weighted estimates

S. V. Kislyakov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Suppose $1<r<2$ and $b$ is a weight on $\mathbb R$ such that $b^{-\frac1{r-1}}$ satisfies the Muckenhoupt condition $A_{r'/2}$ ($r'$ is the exponent conjugate to $r$). If $f_j$ are functions whose Fourier transforms are supported on mutually disjoint intervals, then
$$ \Bigl\Vert\sum_j f_j\Bigr\Vert_{L^p(\mathbb R,b)}\le C\Bigl\Vert\Bigl(\sum_j|f_j|^2\Bigr)^{1/2}\Bigr\Vert_{L^p(\mathbb R,b)} $$
for $0<p\le r$. Bibl. – 9 titles.

UDC: 517.5

Received: 12.03.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 156:5, 824–833

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024