On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids
Abstract:
Solutions of the two-dimensional initial boundary-value problem for the Navier–Stokes equations are approximated by solutions of the initial boundary-value problem
\begin{gather}
\frac{\partial v^\varepsilon}{\partial t}-\nu\Delta v^\varepsilon+v^\varepsilon_kv^\varepsilon_{x_k}+\frac12v^\varepsilon\operatorname{div}v^\varepsilon-\frac{1}{\varepsilon}\operatorname{grad}\operatorname{div}w^\varepsilon=f,\enskip
\frac{\partial w^\varepsilon}{\partial t}+\alpha w^\varepsilon=v^\varepsilon,\enskip
\nu,\alpha>0
\tag{9}
\\
v^\varepsilon|_{t=0}=v_0^\varepsilon(x),\quad w^\varepsilon|_{t=0}=0,\quad x\in\Omega;\quad
v^\varepsilon|_{\partial\Omega}=w^\varepsilon|_{\partial\Omega}=0,\quad t\geqslant0,
\tag{10}
\end{gather}
We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global $B$-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin–Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.