RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 202, Pages 185–189 (Mi znsl1731)

Solvability of nonlinear systems including $(\gamma,\delta)$-comparison pairs

M. N. Yakovlev


Abstract: Let $\gamma,\delta\in R^n$ with $\gamma_j,\delta_j\in\{0,1\}$. A comparison pair for a system of equations $f_i(u_1,\dots,u_n)=0$ $(i=1,\dots,n)$ is a pair of vectors $v,w\in R^n$, $v\leqslant w$, such that
\begin{gather*} \gamma_if_i(u_1,\dots,u_{i-1},v_i,u_{i+1},\dots,u_n)\leqslant0 \\ \delta_if_i(u_1,\dots,u_{i-1},w_i,u_{i+1},\dots,u_n)\geqslant0 \end{gather*}

for $\gamma_ju_j\geqslant v_j$, $\delta_ju_j\leqslant w_j$ $(j=1,\dots,n)$. The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.

UDC: 517.949.8


 English version:
Journal of Mathematical Sciences, 1996, 79:3, 1146–1149

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025