RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 202, Pages 190–203 (Mi znsl1732)

Periodic solutions of second-order systems with one-sided restrictions to the growth of the right-hand side with respect to the first derivative

M. N. Yakovlev


Abstract: For the system
\begin{equation} u''_i=f_i(t,u_1,\dots,u_n,u_1',\dots,u_n')\quad (i=1,\dots,n) \tag{1} \end{equation}
a periodic solution exists if for each i one of the following inequalities holds:
\begin{gather*} f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\leqslant A(p_1,\dots,p_{i-1})p_i^2+B(p_1,\dots,p_{i-1}), \\ f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}), \\ f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}\leqslant A(p_1,\dots,p_{i-1})p_i^2+B(p_1,\dots,p_{i-1}), \\ f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}), \\ f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}u_i\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}), \end{gather*}
for $\alpha(t)\leqslant u\leqslant\beta(t)$. Here $\alpha(t)$ and $\beta(t)$ are the lower and upper vector functions for system (1) and the periodic conditions; $A\geqslant0$, $B\geqslant0$. Bibliography: 1 titles.

UDC: 518:517.927.4


 English version:
Journal of Mathematical Sciences, 1996, 79:3, 1150–1159

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024