Periodic solutions of second-order systems with one-sided restrictions to the growth of the right-hand side with respect to the first derivative
M. N. Yakovlev
Abstract:
For the system
\begin{equation}
u''_i=f_i(t,u_1,\dots,u_n,u_1',\dots,u_n')\quad (i=1,\dots,n)
\tag{1}
\end{equation}
a periodic solution exists if for each i one of the following inequalities holds:
\begin{gather*}
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\leqslant A(p_1,\dots,p_{i-1})p_i^2+B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}\leqslant A(p_1,\dots,p_{i-1})p_i^2+B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}u_i\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}),
\end{gather*}
for
$\alpha(t)\leqslant u\leqslant\beta(t)$. Here
$\alpha(t)$ and
$\beta(t)$ are the lower and upper vector functions for system (1) and the periodic conditions;
$A\geqslant0$,
$B\geqslant0$. Bibliography: 1 titles.
UDC:
518:517.927.4